159 research outputs found

    Orthonormal sequences in L2(Rd)L^2(R^d) and time frequency localization

    Full text link
    We study uncertainty principles for orthonormal bases and sequences in L2(Rd)L^2(\R^d). As in the classical Heisenberg inequality we focus on the product of the dispersions of a function and its Fourier transform. In particular we prove that there is no orthonormal basis for L2(R)L^2(\R) for which the time and frequency means as well as the product of dispersions are uniformly bounded. The problem is related to recent results of J. Benedetto, A. Powell, and Ph. Jaming. Our main tool is a time frequency localization inequality for orthonormal sequences in L2(Rd)L^2(\R^d). It has various other applications.Comment: 18 page

    Dispersive estimates for Schr\"odinger operators with point interactions in R3\mathbb{R}^3

    Full text link
    The study of dispersive properties of Schr\"odinger operators with point interactions is a fundamental tool for understanding the behavior of many body quantum systems interacting with very short range potential, whose dynamics can be approximated by non linear Schr\"odinger equations with singular interactions. In this work we proved that, in the case of one point interaction in R3\mathbb{R}^3, the perturbed Laplacian satisfies the same LpLqL^p-L^q estimates of the free Laplacian in the smaller regime q[2,3)q\in[2,3). These estimates are implied by a recent result concerning the LpL^p boundedness of the wave operators for the perturbed Laplacian. Our approach, however, is more direct and relatively simple, and could potentially be useful to prove optimal weighted estimates also in the regime q3q\geq 3.Comment: To appear on: "Advances in Quantum Mechanics: Contemporary Trends and Open Problems", G. Dell'Antonio and A. Michelangeli eds., Springer-INdAM series 201

    Quantization and Compressive Sensing

    Get PDF
    Quantization is an essential step in digitizing signals, and, therefore, an indispensable component of any modern acquisition system. This book chapter explores the interaction of quantization and compressive sensing and examines practical quantization strategies for compressive acquisition systems. Specifically, we first provide a brief overview of quantization and examine fundamental performance bounds applicable to any quantization approach. Next, we consider several forms of scalar quantizers, namely uniform, non-uniform, and 1-bit. We provide performance bounds and fundamental analysis, as well as practical quantizer designs and reconstruction algorithms that account for quantization. Furthermore, we provide an overview of Sigma-Delta (ΣΔ\Sigma\Delta) quantization in the compressed sensing context, and also discuss implementation issues, recovery algorithms and performance bounds. As we demonstrate, proper accounting for quantization and careful quantizer design has significant impact in the performance of a compressive acquisition system.Comment: 35 pages, 20 figures, to appear in Springer book "Compressed Sensing and Its Applications", 201

    Frame Theory for Signal Processing in Psychoacoustics

    Full text link
    This review chapter aims to strengthen the link between frame theory and signal processing tasks in psychoacoustics. On the one side, the basic concepts of frame theory are presented and some proofs are provided to explain those concepts in some detail. The goal is to reveal to hearing scientists how this mathematical theory could be relevant for their research. In particular, we focus on frame theory in a filter bank approach, which is probably the most relevant view-point for audio signal processing. On the other side, basic psychoacoustic concepts are presented to stimulate mathematicians to apply their knowledge in this field

    Probabilistic frames: An overview

    Full text link
    Finite frames can be viewed as mass points distributed in NN-dimensional Euclidean space. As such they form a subclass of a larger and rich class of probability measures that we call probabilistic frames. We derive the basic properties of probabilistic frames, and we characterize one of their subclasses in terms of minimizers of some appropriate potential function. In addition, we survey a range of areas where probabilistic frames, albeit, under different names, appear. These areas include directional statistics, the geometry of convex bodies, and the theory of t-designs

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society
    corecore